Data Formats¶
StringSight requires specific data formats for input and produces structured outputs. This guide covers all supported formats and schemas.
Input Data Formats¶
StringSight supports two primary analysis methods, each with specific column requirements.
Single Model Format¶
Used for analyzing behavioral patterns from individual model responses.
Required Columns¶
| Column | Type | Description | Example |
|---|---|---|---|
prompt |
str |
User question/prompt | "What is machine learning?" |
model |
str |
Model identifier | "gpt-4", "claude-3-opus" |
model_response |
str or list |
Model's response (see Response Format) | "Machine learning is..." |
Optional Columns¶
| Column | Type | Description | Example |
|---|---|---|---|
question_id |
str |
Unique conversation ID | "q_12345" (auto-generated if missing) |
score |
dict |
Quality/evaluation scores | {"accuracy": 0.85, "helpfulness": 4.2} |
Example DataFrame¶
import pandas as pd
df = pd.DataFrame({
"question_id": ["q1", "q2", "q3"],
"prompt": [
"What is machine learning?",
"Explain quantum computing",
"Write a poem about AI"
],
"model": ["gpt-4", "gpt-4", "gpt-4"],
"model_response": [
[{"role": "user", "content": "What is machine learning?"},
{"role": "assistant", "content": "Machine learning is a subset of AI..."}],
[{"role": "user", "content": "Explain quantum computing"},
{"role": "assistant", "content": "Quantum computing uses quantum bits..."}],
[{"role": "user", "content": "Write a poem about AI"},
{"role": "assistant", "content": "In circuits of light, intelligence grows..."}]
],
"score": [
{"accuracy": 1, "helpfulness": 4.5},
{"accuracy": 0, "helpfulness": 3.8},
{"accuracy": 1, "helpfulness": 4.2}
]
})
Side-by-Side Format¶
Used for head-to-head model comparisons (Arena-style battles).
StringSight supports TWO ways to provide side-by-side data:
Option 1: Pre-Paired Format (Explicit Columns)¶
Provide explicit columns for both models with their responses already paired.
Required Columns:
| Column | Type | Description | Example |
|---|---|---|---|
prompt |
str |
Question given to both models | "What is machine learning?" |
model_a |
str |
First model identifier | "gpt-4" |
model_b |
str |
Second model identifier | "claude-3" |
model_a_response |
str or list |
First model's response | "ML is a subset of AI..." |
model_b_response |
str or list |
Second model's response | "Machine learning involves..." |
Optional Columns:
| Column | Type | Description | Example |
|---|---|---|---|
question_id |
str |
Unique conversation ID | "battle_001" |
score |
dict |
Battle results and scores | {"winner": "model_a", "helpfulness": 4.2} |
Example:
# Pre-paired side-by-side format
df = pd.DataFrame({
"question_id": ["b1", "b2", "b3"],
"prompt": [
"What is machine learning?",
"Explain quantum computing",
"Write a poem about AI"
],
"model_a": ["gpt-4", "gpt-4", "gpt-4"],
"model_b": ["claude-3", "claude-3", "claude-3"],
"model_a_response": [
[{"role": "user", "content": "What is machine learning?"},
{"role": "assistant", "content": "ML is a subset of AI..."}],
[{"role": "user", "content": "Explain quantum computing"},
{"role": "assistant", "content": "Quantum computing uses qubits..."}],
[{"role": "user", "content": "Write a poem about AI"},
{"role": "assistant", "content": "In circuits of light..."}]
],
"model_b_response": [
[{"role": "user", "content": "What is machine learning?"},
{"role": "assistant", "content": "Machine learning involves..."}],
[{"role": "user", "content": "Explain quantum computing"},
{"role": "assistant", "content": "QC leverages quantum phenomena..."}],
[{"role": "user", "content": "Write a poem about AI"},
{"role": "assistant", "content": "Silicon dreams awaken..."}]
],
"score": [
{"winner": "model_a", "helpfulness": 4.2},
{"winner": "model_a", "helpfulness": 3.8},
{"winner": "model_b", "helpfulness": 4.5}
]
})
# Run analysis
from stringsight import explain
clustered_df, model_stats = explain(df, method="side_by_side")
Option 2: Tidy Format with Model Selection (Auto-Pairing)¶
Provide data in tidy single-model format and specify which two models to compare using the model_a and model_b parameters. StringSight will automatically pair responses for shared prompts.
Key Parameters:
- model_a="model_name" - First model to compare
- model_b="model_name" - Second model to compare
Required Columns:
| Column | Type | Description | Example |
|---|---|---|---|
prompt |
str |
User question/prompt | "What is machine learning?" |
model |
str |
Model identifier | "gpt-4", "claude-3" |
model_response |
str or list |
Model's response | "Machine learning is..." |
Complete Example:
# Tidy format with multiple models
df_tidy = pd.DataFrame({
"prompt": [
"What is machine learning?",
"What is machine learning?", # Same prompt, different model
"Explain quantum computing",
"Explain quantum computing",
"Write a poem about AI",
"Write a poem about AI"
],
"model": ["gpt-4", "claude-3", "gpt-4", "claude-3", "gpt-4", "claude-3"],
"model_response": [
[{"role": "user", "content": "What is machine learning?"},
{"role": "assistant", "content": "ML is a subset of AI..."}],
[{"role": "user", "content": "What is machine learning?"},
{"role": "assistant", "content": "Machine learning involves..."}],
[{"role": "user", "content": "Explain quantum computing"},
{"role": "assistant", "content": "Quantum computing uses qubits..."}],
[{"role": "user", "content": "Explain quantum computing"},
{"role": "assistant", "content": "QC leverages quantum phenomena..."}],
[{"role": "user", "content": "Write a poem about AI"},
{"role": "assistant", "content": "In circuits of light..."}],
[{"role": "user", "content": "Write a poem about AI"},
{"role": "assistant", "content": "Silicon dreams awaken..."}]
]
})
# Run side-by-side analysis on tidy data
from stringsight import explain
clustered_df, model_stats = explain(
df_tidy,
method="side_by_side",
model_a="gpt-4", # ← Specify first model
model_b="claude-3" # ← Specify second model
)
# Option B: Using CLI script
# python scripts/run_full_pipeline.py \
# --data_path data/tidy_data.jsonl \
# --output_dir results/ \
# --method side_by_side \
# --model_a "gpt-4" \
# --model_b "claude-3"
How Auto-Pairing Works:
- Filters dataset to only the two specified models
- Finds all prompts answered by BOTH models
- Pairs responses for each shared prompt
- Converts to side-by-side format internally
- Runs analysis on paired data
Note: Only rows where both models answered the same prompt are kept.
Response Format¶
Recommended Format: Use OpenAI conversation format for all model responses. This format preserves conversation structure, supports multimodal inputs, and enables better trace visualization in the UI.
Automatic Format Detection¶
StringSight automatically detects and converts response formats:
- OpenAI format (list of message dicts) → Used as-is (recommended)
- Simple strings → Automatically converted to OpenAI conversation format
- Other types → Converted to string then processed
OpenAI Conversation Format¶
For complex conversations involving multiple turns, tool use, or multimodal content, use OpenAI's conversation format.
Message Structure¶
Each message is a dictionary with:
Required Fields:
- role: "user", "assistant", "system", or "tool"
- content: Message content (string or dict)
Optional Fields:
- name: Model/tool identifier
- id: Unique identifier for the message
Simple Text Conversation¶
response = [
{
"role": "user",
"content": "What is machine learning?"
},
{
"role": "assistant",
"content": "Machine learning is a subset of artificial intelligence..."
}
]
Multi-Turn Conversation¶
response = [
{"role": "user", "content": "What is 2+2?"},
{"role": "assistant", "content": "2+2 equals 4."},
{"role": "user", "content": "What about 3+3?"},
{"role": "assistant", "content": "3+3 equals 6."}
]
Tool-Augmented Response¶
response = [
{
"role": "user",
"content": "Search for papers on quantum computing"
},
{
"role": "assistant",
"content": {
"tool_calls": [
{
"name": "search_papers",
"arguments": {
"query": "quantum computing",
"year": 2024,
"max_results": 5
},
"tool_call_id": "call_abc123"
}
]
}
},
{
"role": "tool",
"name": "search_papers",
"content": "Found 5 papers: [1] Quantum Error Correction..."
},
{
"role": "assistant",
"content": "Based on the search results, here are recent developments..."
}
]
Multimodal Input¶
response = [
{
"role": "user",
"content": {
"text": "What's in this image?",
"image": "..."
}
},
{
"role": "assistant",
"content": "I can see a diagram showing neural network architecture..."
}
]
Score Format¶
Single Metric¶
Multiple Metrics¶
df["score"] = [
{"accuracy": 1, "helpfulness": 4.2, "harmlessness": 4.8},
{"accuracy": 0, "helpfulness": 3.5, "harmlessness": 4.9},
{"accuracy": 1, "helpfulness": 4.8, "harmlessness": 4.7}
]
Side-by-Side Winner Format¶
Combined Format¶
df["score"] = [
{"winner": "model_a", "accuracy": 0.9, "helpfulness": 4.5},
{"winner": "model_b", "accuracy": 0.7, "helpfulness": 3.8},
{"winner": "tie", "accuracy": 0.8, "helpfulness": 4.0}
]
Using Separate Score Columns¶
Instead of providing scores as a dictionary in a single column, you can use the score_columns parameter to specify separate columns for each metric. StringSight will automatically convert them to the required dictionary format.
Single Model with Score Columns¶
import pandas as pd
from stringsight import explain
# Data with separate score columns
df = pd.DataFrame({
"prompt": ["What is AI?", "Explain ML", "What is DL?"],
"model": ["gpt-4", "gpt-4", "gpt-4"],
"model_response": [
[{"role": "user", "content": "What is AI?"},
{"role": "assistant", "content": "AI is..."}],
[{"role": "user", "content": "Explain ML"},
{"role": "assistant", "content": "ML is..."}],
[{"role": "user", "content": "What is DL?"},
{"role": "assistant", "content": "DL is..."}]
],
"accuracy": [0.9, 0.85, 0.95], # Separate column
"helpfulness": [4.2, 4.0, 4.5], # Separate column
"clarity": [4.8, 4.5, 4.7] # Separate column
})
# Specify which columns contain scores
clustered_df, model_stats = explain(
df,
method="single_model",
score_columns=["accuracy", "helpfulness", "clarity"] # Automatically converted to score dict
)
Side-by-Side with Score Columns¶
For side-by-side comparisons, score columns should have _a and _b suffixes:
# Data with separate score columns for each model
df = pd.DataFrame({
"prompt": ["What is AI?", "Explain ML"],
"model_a": ["gpt-4", "gpt-4"],
"model_b": ["claude-3", "claude-3"],
"model_a_response": [
[{"role": "user", "content": "What is AI?"},
{"role": "assistant", "content": "AI is..."}],
[{"role": "user", "content": "Explain ML"},
{"role": "assistant", "content": "ML is..."}]
],
"model_b_response": [
[{"role": "user", "content": "What is AI?"},
{"role": "assistant", "content": "AI involves..."}],
[{"role": "user", "content": "Explain ML"},
{"role": "assistant", "content": "Machine learning..."}]
],
"accuracy_a": [0.9, 0.85], # Model A accuracy
"accuracy_b": [0.88, 0.90], # Model B accuracy
"helpfulness_a": [4.2, 4.0], # Model A helpfulness
"helpfulness_b": [4.3, 4.1] # Model B helpfulness
})
# Specify base metric names (without _a/_b suffixes)
clustered_df, model_stats = explain(
df,
method="side_by_side",
score_columns=["accuracy", "helpfulness"] # Will look for *_a and *_b columns
)
Tidy Data with Score Columns¶
When using tidy format with model_a and model_b parameters, specify the score columns and they'll be pivoted automatically:
# Tidy format with separate score columns
df = pd.DataFrame({
"prompt": ["What is AI?", "What is AI?", "Explain ML", "Explain ML"],
"model": ["gpt-4", "claude-3", "gpt-4", "claude-3"],
"model_response": [
[{"role": "user", "content": "What is AI?"},
{"role": "assistant", "content": "AI is..."}],
[{"role": "user", "content": "What is AI?"},
{"role": "assistant", "content": "AI involves..."}],
[{"role": "user", "content": "Explain ML"},
{"role": "assistant", "content": "ML is..."}],
[{"role": "user", "content": "Explain ML"},
{"role": "assistant", "content": "ML involves..."}]
],
"accuracy": [0.9, 0.88, 0.85, 0.90],
"helpfulness": [4.2, 4.3, 4.0, 4.1]
})
# Convert tidy to side-by-side with score columns
clustered_df, model_stats = explain(
df,
method="side_by_side",
model_a="gpt-4",
model_b="claude-3",
score_columns=["accuracy", "helpfulness"] # Automatically pivoted to *_a/*_b format
)
Benefits of using score_columns:
- More natural data format (especially when exporting from databases or spreadsheets)
- No need to manually construct score dictionaries
- Automatic validation that columns contain numeric values
- Works seamlessly with tidy data conversion
Output Data Formats¶
When you specify output_dir, StringSight saves multiple files in different formats.
Main Output Files¶
clustered_results.parquet¶
Format: Apache Parquet Description: Full dataset with all original columns plus extracted properties and clusters
New Columns Added:
| Column | Type | Description |
|---|---|---|
property_id |
str |
Unique property identifier |
property_description |
str |
Extracted behavioral property |
category |
str |
Property category |
reason |
str |
Why this property was identified |
evidence |
str |
Evidence from the response |
behavior_type |
str |
Type of behavior |
property_description_cluster_id |
int |
Fine-grained cluster ID |
property_description_cluster_label |
str |
Human-readable fine cluster name |
embedding |
list[float] |
Property embedding vector (if include_embeddings=True) |
Loading:
full_dataset.json¶
Format: JSON
Description: Complete PropertyDataset object with all data structures
Structure:
{
"conversations": [...],
"properties": [...],
"clusters": [...],
"model_stats": {...},
"all_models": [...]
}
Loading:
from stringsight.core.data_objects import PropertyDataset
dataset = PropertyDataset.load("results/full_dataset.json")
model_cluster_scores.json¶
Format: JSON Description: Per model-cluster performance metrics
Structure:
{
"gpt-4": {
"Reasoning Transparency": {
"size": 150,
"proportion": 0.25,
"quality": {"accuracy": 0.92, "helpfulness": 4.5},
"quality_delta": {"accuracy": 0.0375, "helpfulness": 0.075},
"proportion_delta": 0.12,
"examples": ["q1", "q2", "q3"],
"proportion_ci": {"lower": 0.22, "upper": 0.28},
"quality_ci": {...},
"quality_delta_ci": {...},
"proportion_delta_ci": {...}
}
}
}
cluster_scores.json¶
Format: JSON Description: Per-cluster aggregated metrics across all models
model_scores.json¶
Format: JSON Description: Per-model aggregated metrics across all clusters
summary.txt¶
Format: Plain text Description: Human-readable analysis summary
Intermediate Files¶
These are saved during pipeline execution:
raw_properties.jsonl- Raw LLM extraction responsesextraction_stats.json- Extraction stage statisticsparsed_properties.jsonl- Parsed property objectsparsing_stats.json- Parsing success/failure statsvalidated_properties.jsonl- Validated propertiesvalidation_stats.json- Validation statisticsembeddings.parquet- Property embeddings data
Loading Data¶
From Files¶
import pandas as pd
from stringsight.core.data_objects import PropertyDataset
# Load clustered results
df = pd.read_parquet("results/clustered_results.parquet")
# Load full dataset
dataset = PropertyDataset.load("results/full_dataset.json")
# Load metrics
import json
with open("results/model_cluster_scores.json") as f:
metrics = json.load(f)
From Various Sources¶
# CSV
df = pd.read_csv("data.csv")
# JSON Lines
df = pd.read_json("data.jsonl", lines=True)
# Parquet
df = pd.read_parquet("data.parquet")
# JSON
df = pd.read_json("data.json")
Data Validation¶
StringSight automatically validates your data format. You can also validate manually:
from stringsight.formatters import detect_method, validate_required_columns
# Detect single_model vs side_by_side
method = detect_method(df)
print(f"Detected method: {method}")
# Validate required columns
try:
validate_required_columns(df, method)
print("✅ Data format is valid")
except ValueError as e:
print(f"❌ Validation error: {e}")
Converting Between Formats¶
Tidy to Side-by-Side¶
Convert single-model format to side-by-side for comparison:
python scripts/run_full_pipeline.py \
--data_path data/tidy_data.jsonl \
--output_dir results/ \
--method side_by_side \
--model_a "gpt-4" \
--model_b "claude-3"
This automatically: 1. Filters to prompts answered by both models 2. Pairs responses for each shared prompt 3. Converts to side-by-side format
Programmatic Conversion¶
# Example: Convert tidy to side-by-side
models_a = df[df['model'] == 'gpt-4']
models_b = df[df['model'] == 'claude-3']
side_by_side = pd.merge(
models_a,
models_b,
on='prompt',
suffixes=('_a', '_b')
).rename(columns={
'model_a': 'model_a',
'model_b': 'model_b',
'model_response_a': 'model_a_response',
'model_response_b': 'model_b_response'
})
Best Practices¶
Data Preparation¶
- Unique IDs: Use meaningful
question_idvalues for easier tracking - Consistent Naming: Use consistent model names across your dataset
- Score Format: Use dictionaries for multiple evaluation criteria
- Response Format: Use OpenAI format for complex conversations
Quality Checks¶
# Check for missing values
print(df.isnull().sum())
# Check model distribution
print(df['model'].value_counts())
# Check response lengths
df['response_length'] = df['model_response'].str.len()
print(df['response_length'].describe())
# Verify score format
if 'score' in df.columns:
print(df['score'].apply(type).value_counts())
Performance Tips¶
- Use Parquet: Faster loading/saving than CSV or JSON
- Sample Large Datasets: Use sampling for initial exploration
- Cache Results: Save intermediate results to avoid recomputation
Troubleshooting¶
Common Issues¶
"Missing required column"
# Check your columns
print(df.columns.tolist())
# Rename if needed
df = df.rename(columns={'response': 'model_response'})
"Invalid response format"
"Score column not recognized"
# Ensure scores are dictionaries
import json
df['score'] = df['score'].apply(json.loads) # If stored as strings
Next Steps¶
- Configuration Options - Learn about all available parameters
- Basic Usage - See how to use these formats with
explain()andlabel() - Visualization - Explore results in the web interface